Rutgers University Law School

Building Addition and Renovation Camden, NJ

Technical Assignment 2 October 26, 2007

Nathan E. Reynolds Structural Option AE 481W Senior Thesis The Pennsylvania State University Faculty Consultant: Professor M. Kevin Parfitt

TABLE OF CONTENTS

EXECUTIVE SUMMARY	2
INTRODUCTION	3
STRUCTURAL SYSTEM	4
Foundation System Columns Floor Systems Lateral Force Resisting System Roof Framing System Typical Floor Framing Plan	4 5 5 5 6
BUILDING LOADS	6
DEAD LOAD Live Load	6 6
DESIGN REQUIREMENTS	7
FLOOR SYSTEM INVESTIGATION	8
EXISTING SYSTEM: COMPOSITE BEAM PROPOSED SYSTEM #1: GIRDER-SLAB/HOLLOW CORE PLANK PROPOSED SYSTEM #2: ONE WAY SLAB ON STEEL BEAMS PROPOSED SYSTEM #3: ONE WAY POST-TENSIONED T-BEAM PROPOSED SYSTEM #4: TWO WAY FLAT SLAB WITH DROP PANELS	8 9 10 11 13
SUMMARY:	15
APPENDIX:	16
TYPICAL FLOOR FRAMING PLAN: Composite Beam Floor System Calculations: Girder Slab/Hollow Core Plank Calculations: One Way Slab on Steel Beam Calculations One Way Post-Tensioned T-Beam Calculations: Two Way Flat Slab with Drop Panels Calculations:	16 17 21 25 29 33
REFERENCES:	42

Executive Summary:

This report examines the feasibility of several different floor framing methods and materials in respect to the Rutgers University Law School Addition. The loading considered for this assignment included gravity loads only, no effect of wind or seismic loading was taken into consideration in this preliminary design. The purpose of this analysis was to evaluate the need for further study of certain floor framing systems and to eliminate others from practical use. In this report I discuss the advantages and disadvantages of five systems as compared to the existing composite beam system designed for the addition. These systems are:

- 1. Girder Slab System
- 2. Hollow Core Plank System
- 3. One-Way Slab on Steel Beams
- 4. One-Way Post-Tensioned T-Beam System
- 5. Two-Way Flat Slab with Drop Panels

A major aspect to the design of the addition was the development of large open spans conducive to classroom spaces. As a result, only one bay was created in the North-South direction allowing for two classrooms and one central corridor. As part of my study, I attempted to choose systems that would permit this design feature to be maintained, rather than requiring additional building width to be created.

After analysis, the Girder-Slab system was found to be insufficient to accommodate 47 foot by 20 foot bays. Given the design information provided by the Girder-Slab, the largest usable span I was able to obtain for my loading was 20 foot by 20 foot, which would require the addition of two column lines and creating three spans, dramatically changing the building plan. Additionally, the two-way flat slab was also found to be insufficient to span 47 feet; however, this system would only require the addition of one column line as bay sizes of 20 foot by 27 foot were able to be attained.

The one way slab on steel beams proved to be significantly less effective than the existing composite beam framing system. This system utilized the same framing plan as currently exists for the building; however, without the use of composite action much larger members were required to support the loads applied. These results, coupled with the lack of added benefits by changing from composite beams eliminate this system as a possible alternative.

The hollow core plank system is able to span the required distances, and although this system does not seem to be the best fit for the building, it is still a possible alternative floor framing system. In addition, the post-tensioned T-beam framing system presents a great deal of added benefits to the floor system; although local practice could make this an unfeasible alternative as well, for now this appears to be the best alternative framing system studied in this report. Following the guest lecture by Richard Apple, P.E., from Holbert Apple Associates, Inc, the design produced for the T-beam in this report would need to be resized to permit for the 2-1/4" by 5" post tensioning pockets.

Introduction:

The Rutgers University Law School Building and Renovation consists of an east building addition, west building renovation and addition, and the development of a connecting bridge which is used to create a student lounge. As the west building additions are minimal, I will concentrate my efforts primarily on the east building addition and will attempt to examine the bridge design project at later date.

The east building consists of two major sections, the primary classroom section, which will be referred to as the primary east addition (4 floors, with basement and penthouse, 75'-0" height) and a student law clinic, which will be referred to as the secondary east addition (2 floors, with basement, 36'-4" height). A majority of the focus in Technical Assignment #2 will be on the typical framing bays located in the primary east addition, as the largest spans and most restrictive framing systems are demanded in this space. Connected to the west edge of the primary east addition is the bridge support system. This system creates several complicated analysis procedures which will be investigated in more depth later in this semester and have been neglected in the study of potential floor framing systems for this assignment.

Figure 1: Plan illustrating different building components referenced in this report

Structural System:

The following sections will describe the structural elements incorporated in the design of the Rutgers University Law School Building.

Foundation System

The foundation system utilized to support the east building addition incorporates moment-resisting spread foundations, concrete pad foundations, and typical wall footing foundations. The foundation system supporting the bridge designed to cross Fifth Street includes drilled piles with pile caps along with a typical wall footing.

The spread footings supporting the moment frames, designed to resist moments generated by lateral loads, are 11'-0" x 11'-0" x 2'-6" concrete slab, reinforced with No. 8 rebar spaced at 12" on center each way, with a 40" x 40" reinforced pier to 10" below grade. In the smaller, three story section, of the east addition, the moment-resisting foundations are 7'-0" x 7'-0" x 2'0" spread footings with No. 7 rebar at 7" on center each way. Again, these foundations are supporting a 40" x 40" reinforced pier designed to transfer the moment to the ground. In addition, these spread footings have been designed to be supplemented by the displacement geopier system provided by Geostructures, Inc. to achieve an allowable bearing capacity of 5000 psf.

The typical wall footings designed around the east addition are 2'-0" wide x 1'0" deep strip footings reinforced with (3) No. 5 rebar longitudinal and No. 4 rebar spaced at 48" on center transversely. This wall footing is typical around the perimeter of the addition, where not influenced by the bridge system. In locations affected by the bridge assembly, the wall footings increase significantly in size, to 2'-6" x 1'-4" with (3) No. 5 rebar longitudinal and No. 5 rebar at 48" on center.

The final foundation system utilized in the Rutgers University Law School Addition is a drilled pile foundation located below the support of the bridge section of the building. A series of (24) 14" diameter piers are drilled to a depth of 65'-70'below grade, as required by the geotechnical report. In the east addition, the piles are capped with (4) 48" pile caps covering (6) piles each. To top off the pile caps, a grade beam, 2'-0" x 2'-0", has been designed to create a wall footing under the bridge addition.

Columns

The typical framing system used in the Rutgers University Law School is steel moment frame construction. Typical columns are attached to form a fixed connection to the foundations are A992 Grade 50 W14X159 for the primary east addition creating typical bays of 20'-0" by 46'-8", and A992 Grade 50 W14X82 for the secondary east addition which create 41'0" by 22'8" typical bays. Optional column splices have been located above the third floor for value engineering options.

Floor Systems

There are several different types of floor systems used throughout the Law School Building. Each system incorporates a composite floor slab $(3/4" \times 5")$ shear stude) with typical A992 Grade 50 steel framing systems.

The floor system used in the primary east addition consist of W21X68 wide flange beams spanning 46'-8", with intermediate beams consisting of W8X18 members spanning the 10'-0" spacing between the beams, which frame into W24X55 girders spanning 20'-0". The typical floor slab consists of 4-1/2" normal weight concrete ($f_c^1 = 4000$ psi), reinforced with 6X6 W2.9 X W2.9 WWF, on 3"-16ga metal floor decking which spans 10'-0". This floor system is used, with slight variations of beam sizes for all levels of the primary east addition, as well as for the secondary east addition.

In the bridge section of the building, rolled wide flange beams, W21X62, span 43'-0" to W40X235 girders spanning the 67'4" across Fifth Street. The floor slab consists of 4-1/2" normal weight concrete ($f_c^1 = 5000$ psi) reinforced with 6X6 W2.9 X W2.9 WWF on 3"-16ga metal floor decking spanning 11'-2" to the W21X62 beams.

Lateral Force Resisting System

The lateral support for the entire east building addition is developed through the use of moment-resisting frames, as an open plan was critical in the architectural design of the building. There are (6) frames spaced at 20'-0" on center for the primary east addition, and (4) frames spaced at 11'-4" on center for the secondary east addition. For the bridge addition, (2) lateral wind resisting frames are required to withstand the load, these frames are spaced at 67'-4" on center. Each of the lateral support frames are created through beam-column moment connections.

The lateral resisting system has been highlighted in the typical framing plan located in the appendix of this report.

Roof Framing System

The roof framing system designed for the entire east building addition and bridge section of the Rutgers University Law School consists of W18 beams spaced at 10'-0" or less on center framing into W18 girders with 3"-18ga galvanized roof decking.

Typical Floor Framing Plan

Building Loads

The following gravity loads were used for the analysis of the floor framing systems considered in this report. A load factor of 1.2D + 1.6L was applied to create maximum load to each system.

Dead Load

The dead load was calculated for each system through material weights and/or the use of standard charts or tables created by the manufacturer of certain systems. In all cases, a superimposed dead load of 15psf was added to account for additional lighting/electrical and mechanical systems, as well as the weight floor finish materials.

Live Load

The live load applied to the floor systems analyzed in this report is 100psf which accounts for the weight of partition walls as well as classroom occupancy or overall corridor loading. This loading was taken as a conservative value for the preliminary design to provide an indication of each system's ability to withstand the large load which will be applied to the center of the clear span in a more detailed analysis.

Design Requirements

The following sections detail the special requirements which need to be addressed within each floor framing system examined. Each of these requirements will help narrow the scope of research performed in future assignments.

Architectural Requirements

There are several architectural requirements in the design of the Rutgers University Law School Building; however, the constraint most influenced by the floor system is the clear span across the North-South direction of the primary east addition. This section includes two classrooms with a dividing corridor. Although a column could be placed on the sides of the hallway, the ability to clear span this distance provides the most flexibility in the building.

Fire Rating Requirements

This building has been designed for Type IB construction, requiring fire resistance ratings of two hours on the floor system. This will need to be taken into consideration with the use of steel members and decking as fire proofing will need to be applied.

Foundation Requirements

The subgrade material located onsite has been determined to have relatively low bearing capacity and requires geopier stabilization to support the loads being applied. As a result, the superstructure weight should be minimized so as to avoid the need of additional stabilization.

Cost Analysis

As with many projects, cost is a major factor in the choice of system design for the Rutgers University Law School Addition. Because this project is financed by the state university of New Jersey, there is not a large budget to design and develop a top of the line law school building which will attract students to attend the university. Each system will be analyzed on a low to high basis for system cost.

Vibration Requirements

Vibration will create the largest influence on the penthouse floor as the mechanical equipment (boilers, pumps, and fans) move while in operation. The majority of this movement will be absorbed by vibration isolators and inertia pads attached to the equipment; however the floor system must be rigid enough to withstand the limited vibration associated with the equipment.

Acoustic Requirements

As this is a classroom building as well as a law office, the need for acoustic privacy is essential. There must be sufficient isolation of rooms through the walls as well as through the floor system.

Floor System Investigation

The following sections briefly describe the floor framing systems investigated for feasibility and economy in the Rutgers University Law School Building Addition.

Existing System: Composite Beam

The existing floor system is composed of 3" metal decking supported by a typical steel framing system. This framing system consists of W24X68 beams spanning 47 feet, with typical W24X55 girders acting as spandrel beams. Composite action is generated through the use of (40) three-quarter inch by five inch shear studs on each supporting beam. The concrete slab generated by this approach uses normal weight concrete, $f_c^1 = 4000$ psi, with a minimal amount of reinforcement. The total slab depth required for this design is 7-1/2" creating a floor load of 75 psf from the Vulcraft Metal Decking Reference Material¹.

TYPICAL FRAMING PLAN

Following the design requirements found in the American Institute for Steel Construction Manual $(AISC)^2$, there are several advantages to the composite floor system: generating a much larger beam capacity, reducing deflection issues, and reducing slab thickness are the most prominent benefits. In addition, this system creates a 31.5" floor system which provides adequate room for mechanical and electrical equipment to be located within the framing system, permitting large floor to ceiling heights. This system also addresses the need for a 47 foot clear span across the North-South direction of the building.

The main disadvantages of this system are the large floor system thickness and the requirement of additional fireproofing to be applied to the steel sections.

Overall, this framing system provides an excellent solution to the design issues which were considered in this assignment.

Proposed System #1: Girder-Slab/Hollow Core Plank

One of the alternate floor systems examined for the Law School was the Girder-Slab system. This system provides for expedited erection time, a critical issue when considering academic buildings. According to Thomas Farone, a senior engineer for the American Institute of Steel Construction (AISC), the system creates a concrete flat slab type system, eliminating the need for beams in the system³. As a result, an analysis of the capacity of the Girder-Slab system was performed, while maintaining the need for 47 foot clear spans. This proved unfeasible, so I attempted to determine the maximum capacity of this system, resulting in 24 foot maximum spans. This type of span would have required two additional columns in the framing plan as a hallway divides the 47 foot span in half. The resulting calculations have been included in the appendix⁴; however, a more typical hollow core slab system was designed as a replacement—as the typical wide flange beams permit much larger spans.

The hollow core slab system consists of typical wide flange steel beams spanning 47 feet with 10" x 4'-0" precast planks with a 2" concrete topping to provide 2-hour fire resistance rating. The typical beam framing used is 24X192 spanning 47 feet, framing into W21X48 acting as girders on the exterior of the building; see the framing plan detailed below.

TYPICAL FRAMING PLAN

There are several key advantages to the hollow core plank system. The first advantage is the erection time is greatly reduced, as curing time for the concrete is not required following placement.

The hollow core plank system inherently has several disadvantages, including the need for a thicker floor system. Also, the trades associated with this system, concrete and steel, will increase the overall system cost and create scheduling issues with coordination of work.

This system may still be considered as an alternative floor framing system for the building, additional research would be required to remove this option.

Proposed System #2: One Way Slab on Steel Beams

This system was examined as an alternative to the existing composite beam design because of the potential to reduce slab thickness and eliminate the need for steel decking. This would permit for less

The framing system considered for the one way slab on steel beams matches the layout generated for the existing system. The slab thickness was determined from the Concrete Reinforcing Steel Institute (CRSI) manual for typical construction sizes, resulting in a 6-inch slab spanning 10 feet⁵. The beams required to support this system have been determined to be W24X55 with W14X34 girders.

TYPICAL FRAMING PLAN

The benefits of a one way slab on steel beams are a reduced slab thickness and the elimination of shear studs. The reduction in material reduces project costs; however, it will delay construction time as shoring is required for the concrete system which will require additional time to be removed.

In addition to creating longer project duration, this system requires formwork not associated with a metal deck system and additional reinforcement. Also, this system requires the coordination of steel erectors with concrete laborers, which will create potential scheduling issues during the construction phase.

Overall, this system is not a viable alternative floor system for the Rutgers University Law School Addition.

Proposed System #3: One Way Post-Tensioned T-Beam

This system was chosen as it typically generates smaller slab thicknesses and allows for greater clear spans, both very important aspects in the Rutgers University Law School Building. As building weight is an important factor in the design of the structure (the soil bearing capacity requires stabilization), creating thinner slabs while maintaining the architectural criteria create great interest in this method of construction. A one way system was chosen in an attempt to maintain only one span in the North-South direction of the building. This requirement eliminates the possibility of creating a two way post tensioned slab.

The post-tensioned design requires the incorporation of a one way slab between the posttensioned T-beam sections. Through analysis, the T-beam section is 9'-2" wide by 47'-0" long, requiring 10'8" one way slab reinforced with No. 4 rebar spaced at 12 inches on center top reinforcement and No. 3 rebar spaced at 10 inches on center bottom reinforcement⁵. The T-beam section is reinforced with (30) $\frac{1}{2}$ " diameter, 270 ksi low elongation post tensioning tendons and No. 4 stirrups to improve the shear capacity of the beam⁶. This system utilizes a 6" slab thickness with a 18" wide by 18" deep beam spanning the 47 foot distance in the North-South direction. This system incorporates the use of 18" by 18" concrete columns to replace the existing steel columns of the building. These columns are sized larger than necessary to provide lateral resistance as well as to improve constructability associated with the 18" wide beam required for the span. See framing plan below for a more detailed framing layout.

TYPICAL FRAMING PLAN

The main advantage to implementing a post tensioned slab in the addition is the ability to clear span and maintain the existing column grid, while incorporating a much thinner slab than is possible with a typical system. Also, this system could be examined for feasibility in the bridge design, potentially reducing the required beam sizes spanning Fifth Street.

There are several disadvantages to this system, in an attempt to create a thinner floor system, shear reinforcement is required and the increased column size will generate a larger load on the foundation system. Another disadvantage associated with this system is the additional equipment required to post tension the beams and slab during construction; hence increasing project cost.

Overall, this system appears to be a potential alternative framing system for the building, increasing floor to ceiling height and decreasing slab thickness.

Proposed System #4: Two Way Flat Slab with Drop Panels

The two way flat slab system was analyzed to determine its effectiveness in large span applications. After a brief study, it was determined that an additional column was necessary for this system to achieve its intended benefits.

This system utilizes a 10.5" slab spanning the 20'-0" by 27'-8" typical bay, requiring the addition of 14-inch by 14-inch columns as located in the framing plan. Following the ACI 318-02 code requirements⁷, the equivalent frame method analysis was completed by pcaSlab to obtain the necessary reinforcement for this system. A 3" drop panel was created at each support, and a column capital was added to reduce punching shear on the slab⁸. As a result, the framing plan and reinforcing elevations illustrated below were generated for the Rutgers University Law School Addition.

Figure 2: Typical North-South Frame Reinforcing (Generated by pcaSlab)

Figure 3: Typical North-South Frame

Figure 4: Typical East-West Frame Reinforcing (Generated by pcaSlab)

Figure 5: Typical East-West Frame

The most practical benefit to this system is the thin floor system generated without any beams or girders. Other potential benefits involve the cheap cost of cast-in-place concrete and the moment resisting capacity of this framing system, which will provide benefits in a lateral resistance analysis.

This system incorporates additional columns which limit the design of the floor plan and adds significant load to the foundation. Additionally, the size of the drop panels creates a significant amount of extra formwork to be constructed to place the concrete slab.

This system does not appear to be a feasible alternative to the existing composite beam floor framing system.

Summary:

	Hollow Core Plank	One Way Slab on Steel Beams	Post-Tensioned T-Beam	Two Way Flat Slab with Drop Panels	Composite Beam
Depth	34"	30"	24"	13.5"	31.5"
Clear Span	Yes	Yes	Yes	No	Yes
Fire Proofing Required	Yes	Yes	No	No	Yes
Building Weight	Medium	Low	High	High	Low
System Cost	High	Medium	Medium	Low	Medium
Vibration Requirements	ОК	ОК	ОК	ОК	ОК
Potential Alternative?	Yes	No	Yes	No	Existing

The following chart summarizes each alternative system and its ability to accommodate required architectural and serviceability conditions.

Figure 6: Alternative System Comparison Chart

In conclusion, through the several alternative floor systems analyzed, the post-tensioned T-beam system appears to require additional study to determine its potential effectiveness in this building case. Other alternatives such as the Girder-Slab system and the two way flat slab system fail to attain the architectural requirements, eliminating their benefit to the Rutgers University Law School Addition. While the one way slab on steel beam system permits adequate spans to be attained, it fails to improve upon the existing composite beam floor system. Finally, another floor system which may provide additional potential for the framing system is the hollow core plank system studied in this report; however, the supports associated with this system are greater than those provided for the existing system.

Appendix:

Typical Floor Framing Plan:

Composite Beam Floor System Calculations:

	TECHNICAL ASSIGNMENT #1 FLOOP SYSTEM SPOT CHECK NATE REYNOLDS
0	COMPOSITE BEAM DESIGN (SECOND FLOOR, SIMPLY SUPPORTED REAM) SPENS: 46'-8" TRIS. WIDTH: 10'-0" W5 = 74.75 PSF . 10' = 747.5 PLF
ure no	A A A A A A A A A A A A A A A A A A A
G.	$M_{mayb} = \frac{\omega_{b} l}{8} = \frac{747.5 \text{ R.F. } (46.67')^{2}}{8} = 203.5^{14}$ $V_{may,b} = \frac{\omega_{b} l}{2} = \frac{747.5 \text{ R.F. } (46.67')}{8} = 17.4^{14}$
	Vo Mo
0	174 ^k 1900 PLE 600 PLE 600 PLE
	15.7K 13' 8.67' 19'
	V . M
	$M_{maw_{pL}} = 240^{16}$ $V_{maw_{pL}} = 15.7^{16}$
	1.20 + 1.6L = 1.2 (203 516) + 16 (240'5) - 670 - 14
0	

```
CHECK LIVE LOAD DEFLECTION
      ASSUMPTION 1000 PLF ACROSS FULL BEAM, FOR EASE
                        OF CALCULATION, CONSERVATIVE ANALYSIS
             \frac{L}{360} = \frac{46.67^{+} 12^{+/1}}{360} = 1.54 \text{ in}
             \Delta_{LL} = \frac{5 \text{ (J)} 1^4}{384 \text{ ET}} = \frac{5 (1000 \text{ PLS})(46.67)^4 (1726 \text{ (J)} \frac{3}{6})^2}{384 (2900 \text{ (SG)})(1000 \text{ (SG)}) \text{ I}}
             JZ 2360 1N4
 CHECK TOTAL LOAD DEFLECTION
            10 = 46.67'.12"" = 2.33 IN
           ATL = 284 ET = 5(1750 P.F)(46.67)4(1728-3/27)
284 (29000KS)(1000 */2)]
           1 2 2765 W4
      MEMBER SELECTION
           ASSUMPTION: T=C
                         Y= = 40
           CHOOSE * W24× 55 OM = 959 " ] = 3370 14 20 = 810"
                    W21×68 & M_=1090" I = 3600 1N4 20,= 1000"
                * HOF SHERE STUDS REGURED: BIOK = 39 = 40 STUPS = 80 STUPS
            SHEAR STUD CAROCHY SPECIFIED IN DRAWWAS! 20 STUD. 21 " = 410"
                THIS WILL PERSURE PNA TO BE POSITION & OR 7
            CHOOSE W24×62 OM= 891 1 J= 28ED IN+ 20= 362 "
```

TECHNICAL ASSIGNMENT #1 FLODE SYSTEM SPOT CHECK NATE REMOUDS COMPOSITE BEAM DESIGN (SECOND FLODE, MOMENT FRAME BEAM) [USED IN LATERAL FRAME ANALYSIS] SPAN: 46'-8" TRIB WIDTH : 10'-0" WD = 747.5 PLF WL - 1000 PLF WL, UD × × ASSUME LIVE LOAD IS UNIFORM Mmax, = - WIZ = 0.75 KLE (46.67') = 136.1 K AT ENDS M MORPEN, 0 = W12 = 68.1 1K MMAX, L = 10 KLF (46 67) = 181 14 MM - 50 8 1K THESE MOMENTS WILL BE USED TO CALCULATE FORCES ON LATERAL RESISTING FRAME ASSUME 1/2 MOMENT CARRIES INTO COLUMN McoL = 90.8 'K

CHECK BEAM CAPACITY (WET CONCRETE) WD = 75. PSF (UT OF CONCRETE AND DECKING ONLY) $M_{Max} = \frac{\omega_0 l^2}{8} = \frac{1.4(75\,\text{RsF})(10')(47')^2}{8} = 290^{14}$ ATL = 240 = 2.33 IN 2.33 IN = 5 (75 PSE) (10') (47) 4 (128) 364 (2900 KSI) (100) (1) I 2 1220 1N4 CHOOSE W24 × 55 \$M_= 503 1 > 290 " Ix= 1350 12 > 1220 124

Girder Slab/Hollow Core Plank Calculations:

Girder-Slab[®] System D-Beam® Calculator Reference Tool 10/25/2007

Project Name: Rutgers University Law School Job Number:

DB Properties

Design Information	<u>n</u>	DB Prope	erties
Dead Load =	60 psf		
Partition Load =	15 psf	DB Size	> DB 9 x 46 ▼
Live Load =	40 psf	Steel Section	on Transformed Section
Topping Load =	25 psf	l _s =	195 in ⁴ $I_t = 356 in^4$
DB Span =	20 ft	S _t = 3	$S_{3.7} \text{ in}^3$ S _t = 68.6 in ³
Plank Span =	20 ft	S _b = 5	$\mathbf{S}_{0.8} \text{ in}^3$ $\mathbf{S}_{\mathbf{b}} = 80.6 \text{ in}^3$
Grout f'c =	5500 psi	M _{scap} = 8	34.0 ft-k
Allowable $\Delta_{LL} = L /$	360	t _w = 0.3	375 in
Allowable Δ_{LL} =	0.67 in	b = 5	5.75 in
Live Load Reduction	on (IBC 00/03/06)		
Include I I R	Check for Y	s)	
% Reduction = I	N/A	3)	
Reduced Load = I	N/A		
Initial Load - Preco	omposite		
M _{DL} =	60.0 ft-k	< 84.0 ft-k <u>OK</u>	
$\Delta_{DL} =$	0.76 in		
∆ Ratio = L /	314		
Camber D-Beam	Check for Y	s)	
D-Beam Camber	1 in		
Total Load Comm			
Total Load - Comp	<u>osite</u>		
M _{sup} =	80.0 ft-k		
M _{TL} =	140.0 ft-k	. 3	
S _{REQ} =	56.0 in [°]	< 68.6 in ³ <u>OK</u>	
$\Delta_{SUP} =$	0.56 in	< 0.67 in <u>OK</u>	
$\Delta_{TOT} =$	1.32 in	= L/ 182	
Superimposed Co	mpressive Stress	on Concrete	
N value =	6.86		
S _{tc} =	471 in ³		
f _c =	2.04 ksi		
Б. =	2.48 ksi	> 2.04 ksi OK	
- c –	2110 1101	<u> </u>	
Bottom Flange Ter	nsion Stress (Tota	Load)	
f _b =	26.1 ksi		
F _b =	45 ksi	> 26.1 ksi <u>OK</u>	
Shear Check			
Total Load =	140 psf		
W =	2.80 klf		
R =	28.0 k		
f _v =	13.0 ksi		
Fv =	20 ksi	> 13.0 ksi <u>OK</u>	

Figure 7: Girder-Slab Preliminary Design Aid from Girder-Slab website

Figure 8: Nitterhouse Concrete Products Spec Sheet

```
TECHNICAL ASSIGNMENT 2 N. REYNOLDS
                                                       HOLLOU CORE RANK SYSTEM
     LOADING :
            SUPERIMPOSED DEAD LOAD; 15 PSF
             LIVE LOAD! 100 PSF
     MAXIMUM SPAN: 28'0"
     TYPICAL SPAN : 20'-0"
      WU= 1.2 (15 PSF) + 1.6 (100 PSF) = 178 PSF
      GO TO CHAP'S
      CHOOSE 10" ×4'-0" PRECAST HALOU CORE PLANK
               W/ 7- 1/2" $ 270 K LO-RELAXATION CABLES
      WEIGHT: GE PSF
     DESIGN REAM
       SPAN: 47'-0"
      SPOCING: 20'-0"
      ASSUME MOMENT CONNECTION EXISTS, FULL LATERAL SUPPORT
ONLY OCCUPS BETWEEN COLUMNS, ALGO CHECK SIMPLE SUPPORT
      W. = 1.2 (68 PSF) + 178 BF = 260 PSF
      260 PSF (20') = 5.19 KLF
      M3 = 5.19KUF (47') = 1433 "
      CHECK DEFLECTION CRITERIA:
         \Delta_{u} = \frac{L}{360} = 1.57'' = \frac{5 \omega l^4}{384 \text{EI}} = \frac{5(100 \text{ PsF})(20)(47)^4(1728)}{384 (2900 \text{ VS}^3)(1)(100)}
                   I 2 4823 1N4
        \Delta_{TL} = \frac{L}{240} = 2.33'' = \frac{5 10^4}{364 \text{ EI}} = \frac{5(183 \text{ PSF})(20')(47')^4(1728)}{364 (29000 \text{ EV})(1)(1000)}
                  I 2 5947 124
         CHOOSE W24 +1925 OM_ = 2100 " > 1433 " V
                                 I = 6260 104 > 5947 104 V
```

	TECHNICAL ASSIGNMENT#2 N.REYNOLDS HOLD CORE PLANK SYSTEM
0	DESIGN GIEDEE
	$A_{T} = \frac{47'}{2} \times 20' = 470 \text{ sf}$
	ASSUME POINT LOAD IN CENTER OF SPAN MOMENT CONNECTION TO COLUMNS
0	SPAN: 20'-0"
	P = 470 SF (260 PSF) = 122 K Pl = 122 K (20')
	$M_{J} = \overline{B} = -\overline{B} = 306^{\circ}$
	$\Delta_{L} = \frac{L}{360} = 0.667'' = \frac{Pl^3}{102 \text{ EI}} = \frac{4705F(100PSF)(20)^3}{102(270000000)} (1728)$
	$1 \ge 175 \text{ is}^4$
~	$\Delta_{TL} = \frac{L}{240} = 1.0'' = \frac{PJ^{2}}{192 ET} = \frac{470 \text{ sr}(183 \text{ Ps}F)(20')^{-}(1728)}{192 (29000 \text{ sr})(1000)(T)}$
	CHOOSE W 21 × 48 $\phi M_{h} = 348' \times 010'$ UNSUPPORTED
	I = 959 124
0	

One Way Slab on Steel Beam Calculations:

TECHNICALASSIGNMENTZ N. RETNOLPS ONE WAY SLAP ON STEEL BOANS LOADS ! SURREIMPOSED DOOD LOAD ! 15 PSF LIVE LOAD ! 100 PSF MATERIAL PROPERTIES f'c = 3000 PS1 fn = 60 000 PSI WU= 1.2 (15 PSF) + 1.6 (100 PSF) = 178 PSF FROM CRSI DESIGN TABLES G" SLAB, SLAB WT = 75 PSF BEAM DESIGN ASSUME . FULL LATERAL SUPPORT SIMPLE SUPPORT W = 178 PSF + 1.2 (75 PSF) = 270 PSF $M_{0} = \frac{270 \text{ PSF}(10)(47)^{2}}{8} = 746^{1/4}$ $\Delta_{LL} = 1.57'' = \frac{5.100 \text{ PSF} (10')(47')^{4} (1728)}{384 (2900053)(1000)(1)}$ I 2 2411 IN4 $\Delta_{12} = 2.33'' = \frac{5.190 \text{ PSE} (10')(47')^4 (1728)}{354 (29000 \text{ KeV})(1000) (I)}$ I 2 3087 1N4 CHOOSE W24 × 104 \$ MA = 1080 1K > 746 'K I = 3100 104 > 3087 104

DESIGN GIEDER ASSUME FIXED AT ENDS POINT LOOD AT MIDSPAN SPAN: 20'-0" $P_{0} = 10' \times \frac{47'}{2} \times 270PSF = 63.5^{K}$ Mu= 63.5 × (20) = 158.6 1k $\Delta_{LL} = O_{67}'' = \frac{235 \text{ SF} (100 \text{ BF})(20')^{3}}{192(29000 \text{ CS})(1000)(1)} (1728)$ I 2 90 1N4 $\Delta_{TL} = 7.0 \text{ IN} = \frac{235 \text{ SF}(130 \text{ BSF})(20')^3(1728)}{192(29000 \text{ SI})(1000)(1)}$ J2110 1N4 CHOOSE W14×34 $\phi_{M_1} = 172^{116} > 159^{16}$ I = 340 10⁴ > 110 10⁴

$f_c' = 3,000$	psi				Grad	ie 60 I	Bars				Top a	nd Bot	tom
Thickness (in.)	4	4½	5	5½	6	6½	7	7½	8	8½	9	9½	1
Top Bars Spacing (in.)	#4 12	#4 11	1										
Bottom Bars Spacing (in.)	#3 12	#3 12	#3 12	#3 11	#3 10	#3 9	#3 8	#3 7	#4 12	#4 12	#4 12	#4 11	ŧ
T-S Bars Spacing (in.)	#3 15	#3 13	#3 12	#3 11	#4 18	#4 17	#4 15	#4 14	#4 13	#4 13	#4 12	#5 18	#
Areas of Steel (in. ² /ft) Top Interior Bottom	.200 .110	.200 .110	.200 .110	.200 .120	.200 .132	200 .147	.200 .165	.200 .189	.200 .200	.200 .200	.200 .200	.218 .218	.2
Slab Wt. (psf)	50	56	63	69	75	81	88	94	100	106	113	119	12
		2. 55		10.0		Anessia		1.5.9.15	1.65		201218	112.3.3	190
CLEAR SPAN		Stres.	392	FACT	ORED U	ISABLE	SUPERI	MPOSE	D LOAD	(psf)			
6'-0" 6'-6"	579 483	680 568	781 652	969 811									
7'-0" 7'-6" 8'-0" 8'-6" 9'-0" 9'-6"	407 345 295 253 218 189	479 407 348 299 259 224	550 468 400 344 298 258	686 585 502 434 377 328	851 727 627 543 473 414	903 780 678 592 520	990 855 743 650 571	931 810 708 622	876 766 673	942 824 725	881 775	940 826	99 87
10'-0" 10'-6" 11'-0" 11'-6" 12'-0" 12'-6"	163 142 123 106 92 79	194 169 147 128 111 96	224 195 170 148 129 112	287 251 220 193 169 148	363 319 282 249 220 194	458 862 320 283 251 222	503 397 351 311 275 244	548 434 383 340 301 267	594 470 416 369 327 290	640 507 448 398 353 314	684 542 479 425 378 336	729 578 512 454 404 359	77 61 54 48 42 38
13'-0" 13'-6" 14'-0" 14'-6" 15'-0" 15'-6"	68 58 49 41	83 71 61 51 43	96 83 71 60 50 42	130 113 99 85 73 63	172 152 134 117 103 90	197 174 154 136 119 105	216 191 169 149 132 115	237 210 186 165 145 128	258 229 203 180 159 140	279 248 220 195 172 152	298 265 235 209 185 163	319 284 252 224 198 175	34 30 26 23 21 18
16'-0" 16'-6" 17'-0" 17'-6" 18'-0" 18'-6"				53 44	78 67 57 47	91 79 68 57 48	101 87 75 64 54 44	112 97 84 72 60 50	122 107 92 79 67 56	133 117 101 87 74 62	143 125 108 93 80 67	154 135 117 101 87 73	16 14 12 10 9 7
19'-0" 19'-6"								41	46	51 41	55 44	61 49	65

Figure 9: CRSI Slab Thickness Design Guide—Interior Span

Thickness (in.)	4	4½	5	5½	£	6%	7	7½	3	8%	9	9½	1
Top Bars Spacing (in.)	#4 12	#/ 12	#4 12	#/ 12	#2 12	#- 12	#4 12	#2 12	#4 12	#2 12	#4 11	#4 10	#
Bottom Bars Spacing (in.)	#3 12	#3 12	#3 12	#3 11	#3 .10	#3 9	8# 3	#3 7	#4 .12	#4 12	#4 12	#4 11	#
Top Bars Free End Spacing (in.)	#4 12	#4 12	#4 12	# 1									
T-S Bars Spacing (in.)	#3 15	#3 13	#3 12	#3 11	#4 18	#4 17	#4 15	#4 14	#4 13	#4 13	#4 12	#5 18	# 1
Areas of Steel (in. ² /ft) Top Interior Bottom	.200 .110	.200 .110	.200 .110	.200 .120	.200 .132	200 141	.200 .165	.200 .189	.200 .200	.200 .200	.218 .200	.240 .218	.26 .21
Slab Wt. (psf)	50	56	63	69	75	81	88	94	100	106	113	119	12
CLEAR SPAN				FACTO	ORED L	SABLE	SUPERI	MPOSE) (psf)		TANA	
6'-0"	376	443	509	636	789	926							
6'-6"	310	366	421	527	657	772							
7'-0" 7'-6" 8'-0" 8'-6" 9'-0" 9'-6"	258 215 181 152 128 108	305 255 215 181 153 129	350 294 247 209 177 150	441 372 315 268 229 195	552 467 398 340 292 251	650 552 471 404 348 301	859 733 629 543 471 410	926 798 691 602 527	911 791 691 605	980 851 743 652	910 795 697	937 824	999 873
10'-0" 10'-6" 11'-0" 11'-6" 12'-0" 12'-6"	90 75 62 51 41	109 92 76 63 52 41	126 106 89 74 61 49	167 142 121 102 86 72	217 187 161 138 118 101	261 226 196 169 146 126	358 313 274 240 211 185	463 382 337 297 262 231	533 415 365 322 285 251	574 447 394 348 307 272	614 534 473 419 372 330	727 642 570 508 452 404	773 683 603 542 483 483
13'-0" 13'-6" 14'-0" 14'-6" 15'-0" 15'-6"				59 48	85 71 59 48	108 92 77 64 53 42	161 141 122 105 90 77	203 179 157 138 120 104	222 195 172 151 132 114	240 212 186 1 <u>64</u> 143 125	293 261 231 205 181 159	361 322 288 257 229 204	386 345 308 276 246 219
16'-0" 16'-6" 17'-0" 17'-6" 18'-0" 18'-6"						÷.	64 53 43	89 76 64 53 43	99 84 71 59 48	108 92 78 66 54 43	140 122 106 91 77 65	181 161 142 124 108 94	195 173 153 134 117 102
19'-0" 19'-6" 20'-0"											53 42	80 68 56	87 74 62

Figure 10: CRSI Slab Thickness Design Guide—End Span

One Way Post-Tensioned T-Beam Calculations:

Μάτε	RIAL STRENGTHS		
	F ^I C	5000	PSI
	F _{cl}	4000	PSI
	W	150	PCF
	F _Y	60	KSI
	TENDONS	270	KSI
	A _s	0.153	IN ² /TENDON

Loads							
	SUPERIMPOSED	15 psf					
	LIVE LOAD	100 PSF					

Assl	ASSUMPTIONS						
	н	6	IN				
	B _w	18	IN				
	B _H	18	IN				
	SPAN	47	FT				
	SPACING	20	FT				
	COVER	3.75	IN				
	PT LOSS	14	KSI				

Dete	rmine Flange Width		
	Span/4	4	IN
	(16 X H) + B _w	4	IN
	Spacing/2	120	IN

Sect	ION PROPERTIE	ËS	
	А	1008	IN ²
	Y _B	17.14	IN
	Y _T	6.86	IN
	I _G	42459	IN ⁴
	SB	2477	IN ³
	ST	6192	IN ³

Requ	IRED NUMBER OF	Tendo	NS
	e	13.39	IN
	6F ¹ C ^{0.5}	424	PSI
	F	799	К
	Fse	175	KSI
	Ν	30	TENDONS
	A _{PS}	4.59	IN ²

Load Type	Load (k/ft)	Moment (ft*k)	TOP STRESS (KSI)	BOTTOM STRESS (KSI)
Slab	1.500	414	-0.803	2.007
Beam	0.338	93	-0.181	0.452
SUPERIMPOSED	0.300	83	-0.161	0.401
Live Load	2.000	552	-1.070	2.676
Total		1142	-2.214	5.535

		Stre	ESSES (KSI)
DESCRIPTION		Тор	Воттом
Dead Load: bea	M + SLAB	-0.983	2.458
P.T. INITIAL		-0.861	-0.861
F e /S _⊺		1.876	
Fe/S _B			-4.691
I. AT TRANSFER		0.032	-3.093
Dead Load			
BEAM + SLAB +	SUPER.	-1.144	2.860
P.T. FINAL		-0.797	-0.797
F e /S _⊤		1.737	
Fe/S _B			-4.343
2. UNDER PERM	ANENT LOAD	-0.203	-2.281
LIVE LOAD		-1.070	2.676
3. UNDER FULL S	SERVICE LOAD	-1.274	0.395
	0.395	<	0.424
		ОК	

CHECK FLE	exural Stre	ENGTH				
	M _U	1592	FT*K			
	ß	0.80				
	Υ _P	0.28				
	P _P	0.00199				
	F _{PS}	260	KSI			
	а	2.46	IN	<	6 IN	OK
	Φ_{M_N}	1701	FT*K	>	1592 ft*k	OK

CHECK REINFORCING LIMITS								
	С	3.08 11	N					
	ε _τ	0.017	>	0.005 OK, TENSION CONTROLED				

Снеск Мім	NIMUM REINFOR	RCING			
	M _{CR}	1170 ft*k			
	F _R	530 psi			
	1.2*M _{cr}	1405 ft*k	<	1701 ft*k	OK

Shear Des	SIGN									
	W _U	5.765 K/FT								
	V _u	127 к								
	MIN	52 к								
	V _c	l29 к	>	127 к	OK					
	МАХ	I29 к								
	$V_{u}^{*}D/M_{u}$	1.09								
	ÖV _c ∕2	48 к	<	127 к	SHEAR REINFORCEMENT REQ	UIRED				
	A _v /s	0.016 ^{IN²} 0.014 IN ²	GO	VERNS						
	٨	α (α $ N^{2}$								
	AV #4 BARS	0.40								
	S _{REQUIRED}	29 IN								
	S _{MAX}	18 in								

CHECK DEFLECTION							
	×		014				
	O _{LL}	1.28 IN	OK				
	L/360	1.57 IN					

Two Way Flat Slab with Drop Panels Calculations:

```
FLAT PLATE UITH DEOP PANELS 1
TECHNICAL AGSIGNMENT 2 N. REYNOLDS
      MATERIAL PROPERTIES
        1'= 4000 PSI
         A = 60 000 PSI
     TYPICAL BAY SIZE : 20' × 46'8" (IN AN ATTEMPT TO RETAN COLUMN)
FREE FLOOP PLAN
     LOADS APPLIED TO FLOOP SLAB
            WD = 15 PSF (SUPERIM POSED)
            WL = 100 PSF (CORE-DOR LOADING ASSUMED ON ENTIRE FLOOR
FOR EASE OF CALCULATON AND WILL PROVIDE
A CONSERVATIVE SOLUTION /
           W, = 1.2 (15 PSF) + 1.6 (100 PSF) = 178 PSF
    * TYPICAL BAY SIZE GENERATES A RATIO OF LONG TO
        GHORT DISTANCES GREATER THAN 2.0
       ADDITIONAL COLUMN WILL BE REQUEED, AND WILL BE
         USED TO GENERATE BAYS OF 20'X 19'6 AND
          20' × 27'2, THE LARGER BAY WILL BE DESIGNED
        ASSUME A 16" X 16" COLUMN, LILL BE ANALYZED LATER
            IN THIS CALCULATION
        times = in For insterior parties and in For Exterior Parties u/o EDGE Borns
                                      OR In FOR EXTERIOR PANELS W/ EDGE BOMS
             lm= 27.167'- 16 = 25.83'
            1 = 8.6" OR 9" SLAB
            1 = 9.4" OR 9.5" SLAB
```



```
FLAT PLATE WITH DOOP PANELS
                                                                                 3
TECHNICAL ASSIGNMENT 2
                            N. REYNOLDS
      COLUMN SIZING (CONT):
              P= 1.2 (5 DELOSE + 4 DEVERE) + 1.6 (LPOSTHOUSE + 3L FLOOR) + 0.5 Le
                 = 1.2 ( 5 ( 56.0 ×)+ 4 (7.0 ×)) + 1.6 (70.0 × + 3 (21.0 ×)) + 0.5 (7.0 ×)
                    = 590 K TO INTERIOR COLUMN
            MINIMUM AREA FOR SCUARE COLUMN, No= 4000 PSI, $=0.9
                    P = $ f' = 0.9 (4KSI) = 3.6KSI
                     A = 164 1N2
                    MINIMUM DIMENSION : 12.8", USE 14" × 14" COLUMN
            ECCENTRICITY OF LOAD AS COLUMN IS NOT CENTERED
                     e= 1.92'
                Kn = 0.84
                R_n = \frac{P_s e}{dT_c A_s h} = \frac{-590^k (192')}{0.9(4 \times 51)(14' \times 14'')(15'')} = 0.11
                USE P= 0.025 FROM GRAPH A.G (NILSON, DARUN, DOLAN)
                       ATTACHED TO APPENDIX
                A= 0.025 (196 22) = 4.9 12
                 USE (12) # 6 BARS A5 = 5.28 12"
OR (8) # 8 BARS A5 = 6.32 12"
      EXTERIOR COLUMN SIZENCA!
             TRIBUTARY WIGTH 1 15'3" × 20'0 = 305 SF
             INFLUENCE AREA OF EXTERIOR COLUMN ; 1150 SF
             LIVE LOAD REDUCTION: (0.25 + 15) = 0.51
              P=395 K USE 12" × 14" COLUMN
              Kn = 0.65
                             e=5.96' p= 0.058 (TOO LARCE)
              R = 0.26
```


Figure 11: Interior Column Design Chart from Design of Concrete Structures 13th Edition (Nilson, Darwin, Dolan)

Figure 12: Exterior Column Design Chart from Design of Concrete Structures 13th Edition (Nilson, Darwin, Dolan)

pcaSlab v1.51 © Portland Cement Association Licensed to: Penn State University, License ID: 52416-1010277-4-22545-221B9 P:\Senior Thesis\Structural Program Files\Flat Plate with Drop Panels.slb

000000		000	000	00	000	
0000000	0	0000000		0000000		
00 C	0	00	00	00	00	
00 C	0	00		00	00	
0000000	0	00		000	0000	00000
0000000		00	00	000	0000	00000
00		00	00	00	00	
00		0000	0000	00	00	
00		000	000	00	00	
000000	0				0	
00000000	00		000	000	00	
00	00		0	00	00	
0000	00		0	00	00	
000000	00		000	0000	000	0000
	00		00	00	00	00
0000			00	00	00	00
0000	00					
0000 00 0000000	00	0	00	00	00	00

pcaSlab v1.51 (TM) A Computer Program Analysis, Design, and Investigation of Reinforced Concrete Slab and Continuous Beam Systems

Copyright © 2000-2006, Portland Cement Association All rights reserved

Licensee stated above acknowledges that Portland Cement Association (PCA) is not and cannot be responsible for either the accuracy or adequacy of the material supplied as input for processing by the pcaSlab computer program. Furthermore, PCA neither makes any warranty expressed nor implied with respect to the correctness of the output prepared by the pcaSlab program. Although PCA has endeavored to produce pcaSlab error free the program is not and cannot be certified infallible. The final and only responsibility for analysis, design and engineering documents is the licensees. Accordingly, PCA disclaims all responsibility in contract, negligence or other tort for any analysis, design or engineering documents prepared in connection with the use of the pcaSlab program.

[2] DESIGN RESULTS

Top Bar Details:

Units: Length (ft)

	-		Left			Continuous			Right			
Span	Strip	Bars	Length	Bars	Length	Bars	Length	Bars	Length	Bars	Length	
1	Column					9-#5	1.67					
	Middle					8-#5	1.67					
2	Column	9-#5	9.16					12-#5	9.16	11-#5	5.78	
	Middle	8-#5	6.30					10-#5	8.63			
3	Column	8-#5	6.73	7-#5	4.25	8-#5	19.50	1-#5	6.63			
	Middle	2-#5	4.62			8-#5	19.50					
4	Column					9-#5	1.67					
	Middle					8-#5	1.67					

Bottom Bar Details:

Units: Start (ft), Length (ft)

		I	Long Bars	5	Short Bars				
Span	Strip	Bars	Start	Length	Bars	Start	Length		
1	Column								
	Middle								
2	Column Middle	16-#5 8-#5	0.00	27.17 27.17	 3-#5	0.00	23.09		
3	Column Middle	8-#5 8-#5	0.00	19.50 19.50					
4	Column Middle								

10-28-2007, 02:41:26 PM

Page 1

AE 481W 10/29/2007

pcaSlab v1.51 © Portland Cement Association Licensed to: Penn State University, License ID: 52416-1010277-4-22545-22189 P:\Senior Thesis\Structural Program Files\Flat Plate with Drop Panels Interior E-W.slb

10-28-2007, 02:51:21 PM

Page 1

ö ö ö ò 00000 0 pcaSlab v1.51 (TM) A Computer Program Analysis, Design, and Investigation of Reinforced Concrete Slab and Continuous Bean Systems

Copyright @ 2000-2006, Portland Cement Association

All rights reserved

Licensee stated above acknowledges that Portland Cement Association (PCA) is not and cannot be responsible for either the accuracy or adequacy of the material supplied as input for processing by the pcaSlab computer program. Furthermore, PCA meither makes any warranty expressed nor implied with respect to the correctness of the output prepared by the pcaSlab program. Although PCA has endeavored to produce pcaSlab error free the program is not and cannot be certified infallible. The final and only responsibility for analysis, design and engineering documents is the licensees. Accordingly, PCA disclaims all responsibility in contract, negligence or other toxt for any snalysis, design or engineering documents prepared in connection with the use of the pcaSlab program.

[2] DESIGN RESULTS

Top Bar Details:

Reiter Territh (Ct)

Unit:	s: reuda	ch (re)		~ ·							
-			Let	tt		Cont:	nuous		R14	int	
Span	Strip	Bars	Length	Dars	Length	Bars	Length	Bars	Length	Bars	Length
1	Column					10-#5	1.67	1-#5	1.58		
	Middle					3-45	1.67				
2	Column	11-#5	9.44					14-#5	9.44	13-#5	5.95
	Middle	9-#5	6.49					12-#5	8.58		
3	Column	10-#5	7.97	9-#5	4.35	8-#5	20.00	2-#5	6.80		
	Middle	2-#5	4.73			10-#5	20.00				
4	Column	9-#5	6.80	1-#5	4.35			9-#5	7.97	4-#5	4.35
	Middle	10-#5	6.73					10-#5	7.97		
5	Column	5-#5	6,80			8-#5	20.00	3-#5	6.80		
-	Middle					10-#5	20.00				
6	Column	9-45	8.22	2-#5	4.35			9-#5	8.21	3-#5	4.35
	Middle	10-#5	8.21					10-#5	8.21		
7	Column	4-#5	6.80			8-#5	20.00	4-#5	6.80		
	Middle					10-#5	20.00				
8	Column	9-45	8,21	3-#5	4.35			9-#5	7.72	2-#5	4.35
-	Middle	10-#5	8.21					10-#5	7.72		
9	Column	3-#5	6,80			8-#5	20.00	7-#5	6.80		
	Middle					10-#5	20.00				
10	Column	9-#5	7.47	6-#5	4.35			9-#5	6.80		
	Middle	10-#5	7.47					10-#5	4.73		
11	Column					9-#5	1.67				
_	Middle					10-#5	1.67				

AE 481W 10/29/2007

pcaSlab v1.51 © Portland Cement Association Licensed to: Penn State University, License ID: 52416-1010277-4-22545-22189 P:\Senior Thesis\Structural Program Files\Flat Plate with Drop Panels Interior E-W.slb

10-28-2007, 02:51:21 FM

Page 2

Bot	ton	Bar	De	tai	18	Ξ
						-

cton i	Dar Detai	18:						
Unit:	a: Start	(ft), Length (ft)			Short Bars			
Span	Strip	Bars	Start	Length	Bars	Start	Length	
1	Column							
	Middle							
2	Column	21-#5	0.00	28.00				
	Middle	9-#5	0.00	28.00	5-#5	0.00	23.80	
3	Column	8-#5	0.00	20.00				
	Middle	10-#5	0.00	20.00				
4	Column	9-#5	0.00	20.00				
	Middle	10-#5	0.00	20.00				
5	Column	8-#5	0.00	20.00				
	Middle	10-#5	0.00	20.00				
6	Column	8-#5	0.00	20.00				
	Middle	10-#5	0.00	20.00				
7	Column	8-#5	0.00	20.00				
	Middle	10-#5	0.00	20.00				
8	Column	8-#5	0.00	20.00				
	Middle	10-#5	0.00	20.00				
9	Column	8-#5	0.00	20.00				
	Middle	10-#5	0.00	20.00				
10	Column	10-#5	0.00	20.00				
	Middle	10-#5	0.00	20.00				
11	Column							
	Middle							

References:

1. Vulcraft Steel Roof and Floor Deck Catalog

2. AISC *Steel Construction Manual* 13th Edition published December 2005 by the American Institute of Steel Construction, Inc.

3. Robertson, Katherine S. Innovative Applications of Concrete and Steel. March 2006. <u>http://www.girder-slab.com/data/articles/7_New-York-Construction.pdf</u>. 25 October 2007.

4. Girder-Slab website design calculator.

5. CRSI Design Handbook published in 2002 by the Concrete Reinforcing Steel Institute

6. Design *of Prestressed Concrete* by Arthur H. Nilson published in 1987 by John Wiley and Sons, Inc.

7. ACI 318-02 *Building Code Requirements for Structural Concrete* published August 2002 by the American Concrete Institute

8. ACI 318-05 Building *Code Requirements for Structural Concrete* published August 2005 by the American Concrete Institute